COMPLEXES OF PLATINUM WITH TRIPHENYLPHOSPHINE AND 2-METHYL-3-BUTYN-2-OL

A. FURLANI, P. BICEV. M. V. RUSSO and P. CARUSI
Istituto di Chimicu Getherule ed Inorganica dell' Universicici di Roma, Rome (Italy)

(Received September 28th, 1970; in revised form December 10th, 1970)

SUMMARY

Some platinum acetylides trans- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}\left[\mathrm{C} \equiv \mathrm{C}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}\right]$ and cisand trans- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left[\mathrm{C} \equiv \mathrm{C}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}\right]_{2}$ have been prepared by a new synthetic procedure. The structures have been assigned on the basis of their UV spectra and by a comparison of their spectra with those of the corresponding bis(triphenylphosphine)platinum phenylacetylides.

These platinum acetylides of 2-methyl-3-butyn-2-ol have been identified as intermediate products in the polymerization of 2-methyl-3-butyn-2-ol in the presence of cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}_{2}$.

INTRODUCTION

The presence of reactive functional groups in a substituted alkyne restricts the use of lithium or sodium or of Grignard reagents in the synthesis of platinum acetylides, and the first example of a dihydridoplatinum diacetylide, derived from a monosubstituted hydroxyacetylene, was reported only recently by Roundhill et al. ${ }^{1,2}$; this compound, (I), was obtained from $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ and 1-ethynylcyclohexanol in ether.

(I)

However, other types of platinum complexes derived from ciihydroxyacetylenes have been known for many years ${ }^{3-10}$. Their structures are similar either to that of Zeise's salts ${ }^{11}$ with the hydroxyacetylene molecule perpendicular to the coor-
dination plane, or to one of the Chatt complexes ${ }^{12}$ in which the acetylene bound to the metal, formally Pt°, lies in the molecular plane. It is generally accepted that there is a contribution by the hydroxyl groups to the stability of such complexes but the manner in which the hydroxyl groups are involved in bonding with the other atoms is still unsettled ${ }^{8,9}$. Recently Roundhill et al. ${ }^{1,2}$ reported some Chatt complexes of monosubstituted hydroxyacetylenes. The synthesis and the properties of some new Pt acetylides of 2-methyl-3-butyn-2-ol are described below.

EXPERIMENTAL

Apparatus

IR spectra were measured using aPerkin-Elmer model 800 instrument. UV spectra were run on a Beckman DK 2 spectrophotometer. NMR spectra were recorded on a Perkin-Elmer model R 12 instument. τ values are referred to tetramethylsilane (TMS).

Reagents

2-Methyl-3-butyn-2-ol (commercial product) was distilled under vacuum, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and redistilled at normal pressure (b.p. 104) before use. cis$\left(\mathrm{PPh}_{3}\right) \mathrm{PtCl}_{2}$ was prepared according to Jensen ${ }^{13}$. Reagent grade solvents were used.

(II)

Preparation of complexes

Bis(triphenylphosphine)(2-methyl-3-butyn-2-ol)platinum (ll). This complex was prepared according to Chatt's method ${ }^{12}: 160.2 \mathrm{mg}$ of cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}_{2}$ were suspended in 4 ml of absolute ethanol and five drops of 24% hydrazine were added. The mixture was heated to reflux for 2 min , i.e. until dissolution was almost complete. The small residue was filtered off, and 0.8 ml of 2-methyl-3-butyn-2-ol were added to the yellow solution. The mixture was heated to reflux and then cooled, and two more drops of hydrazine were added.

When the mixture was allowed to cool overnight a microcrystalline precipitate ($55 \mathrm{mg} 33 \%$ yield) was obtained, and this was recrystallized from $\mathrm{C}_{6} \mathrm{H}_{6}$ or $\mathrm{Cl}_{2} \mathrm{CH}_{2}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by additional $\mathrm{CH}_{3} \mathrm{OH}$ without heating (m.p. 148-150). Compound (II) decomposes in solution, probably by loss of the methylbutynol molecule, and recrystallization of the crude product from mixtures of benzene or 1,2-dichloroethane with 2-methyl-3-butyn-2-ol was subsequently found to give better yields. The elemental analysis is given in Table 1.

The UV spectrum of (II) in CHCl_{3} shows only a shoulder at $255 \mathrm{~m} \mu$. The IR spectrum in Nujol mull is characterized by a band at $1680-1690 \mathrm{~cm}^{-1}$ and a weak band at $3560 \mathrm{~cm}^{-1}$.

TABLE 1
UV SPECTROSCOPIC DATA AND ELEMENTAL ANALYSES

trans-Bis(triphenylphosphine)(3-hydroxy-3-methyl-1-butynyl)platinum chloride (III) 400 mg of cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}_{2}$ were refluxed with 35 ml of CHCl_{3} and 4 ml of 2-methyl-3-butyn-2-ol for 7 h and the green solution was then evaporated under vacuum. Addition of 20 ml of $\mathrm{CH}_{3} \mathrm{OH}$ to the gummy residue gave a yellow green microcrystalline powder, which was filtered off and dissolved in CHCl_{3}. The CHCl_{3} solution was treated with a small amount of $\mathrm{Al}_{2} \mathrm{O}_{3}$, on which the green products were adsorbed. The resulting yellow solution was filtered and reduced to a small volume. Methanol was then added to give a yellow microcrystalline powder (III) ($130 \mathrm{mg}, 31 \%$ yield) which was recrystallized from acetone and then precipitated from CHCl_{3} by addition of $\mathrm{CH}_{3} \mathrm{OH}$ (m.p. 195-198 ${ }^{\circ}$). The elemental analysis was consistent with the formula $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}\left[\mathrm{C} \equiv \mathrm{C}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}\right]$ (see Table 1).

The complex (III) is slightly soluble in hot $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{CH}_{3} \mathrm{COCH}_{3}, \mathrm{CCl}_{4}, \mathrm{Cl}_{2} \mathrm{CH}_{2-}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{CHOHCH}_{2}$ and CS_{2} and insoluble in n-hexane. UV spectroscopic data are given in Table 1. The $\mathbb{I R}$ spectrum shows a doublet at $2095-2110 \mathrm{~cm}^{-1}$.
trans-Bis(triphenylphosphine)bis(3-hydroxy-3-methyl-1-butynyl)platinum (IV)
To 250 mg of cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}_{2}$ were added 5 ml of 2 -methyl-3-butyn-2-ol and two drops of $\mathrm{NH}_{3}(32 \%)$. The mixture was warmed at reflux for 20 min . In a few minutes the cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}_{2}$ dissolved and a yellow precipitate (IV) separated, the
solution turning yellow-brown. After cooling the solid was filtered off ($70 \mathrm{mg}, \mathbf{2 5 \%}$ yield).

The product (IV) is very slightly soluble in hot $\mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}$, $\mathrm{CHCl}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}, \mathrm{CCl}_{4}$ and CS_{2}. It is insoluble in $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{COCH}_{3}$ and n-hexane and was recrystallized from boiling $\mathrm{C}_{6} \mathrm{H}_{6}$ (m.p. 222-225 ${ }^{\circ}$). The elemental analysis of complex (IV) corresponds with a monobenzene adduct $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}$ $\left[\mathrm{C} \equiv \mathrm{C}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}\right]_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ (see Table 1). The product looses one equivalent of benzene on recrystallization from CCl_{4} (Table 1).

UV data are reported in Table 1. The IR spectrum in Nujol mull exhibits a doublet at 2088-2105 cm^{-1}.
cis-Bis(triphenylphosphine)bis(3-hydroxy-3-methyl-1-butynyl)platinum (V)
Method I. To 150 mg of cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}_{2}$ were added 5 ml of 2-methyl-3-butyn-2-ol and 15 mg of NaOH . The mixture was refluxed for 15 min , during which it turned yellow. After 15 min the excess of 2-methyl-3-butyn-2-ol was evaporated under vacuum and the residue treated with $\mathrm{CHCl}_{3} ; \mathrm{NaOH}$ and unreacted cis$\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}_{2}$ were filtered off and the CHCl_{3} solution evaporated to dryness. The residue was dissolved in a small volume of $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{CH}_{3} \mathrm{OH}$ was then added and white crystals (V) separated after a few hours in the cold. The product was recrystallized from $\mathrm{C}_{6} \mathrm{H}_{6}$ by addition of $\mathrm{CH}_{3} \mathrm{OH}$ (m.p. $247-250^{\circ}$) ($37 \mathrm{mg}, 22 \%$ yield). The elemental analysis of compound (V) is consistent with the formula ($\left.\mathrm{PPh} \mathbf{3}_{3}\right)_{2} \mathrm{Pt}[\mathrm{C} \equiv \mathrm{C}-\mathrm{C}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}\right]_{2}$ (see Table 1).

Method II. 220 mg of complex (II) were refluxed with 6 ml of 2-methyl-3-butyn-2-ol for 15 min . The mixture was then reduced to a small volume and $\mathrm{CH}_{3} \mathrm{OH}$ was added. After cooling overnight white crystals separated. The product was taken up in $\mathrm{C}_{6} \mathrm{H}_{6}$ and reprecipitated by addition of $\mathrm{CH}_{3} \mathrm{OH}$ (m.p. 247-250 $)(113 \mathrm{mg}, 47 \%$ yield).

The UV characteristics are listed in Table 1. The IR spectrum of the product is characterized by bands at 3620 and $2120 \mathrm{~cm}^{-1}$.

RESULTS AND DISCUSSION

The synthesis of platinum acetylides of 2-methyl-3-butyn-2-ol was of special interest because of the light it threw upon polymerization of this acetylenc in the presence of platinum complexes. In the polymerization reaction of phenylacetylene in the presence of certain bis(triphenylphosphine)platinum complexes we have identified trans- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}(\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph})$ and cis- and trans- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}(\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph})_{2}$ as active intermediates ${ }^{14}$. [These previously unknown acetylides were also synthesized independently from cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}_{2}$ and $\mathrm{Na}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}$ in liquid ammonia ${ }^{15}$ and were characterized by their UV and IR spectra.] We then studied the polymerization reaction of 2-methyl-3-butyn-2-ol in the presence of cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}_{2}$ (ref. 16), following the course of the reaction by taking aliquots of the polymerization mixture, chromatographing then on silicagel columns and eluting first with $\mathrm{C}_{6} \mathrm{H}_{6}$ and then with CHCl_{3}. The eluted fractions were analyzed spectroscopically and shown to contain compounds with UV and IR spectra similar to those of the complexes mentioned above. It thus seems that this reaction produces analogous intermediates.

Attempts to prepare trans- $\left(\mathrm{P}_{3}\right) \mathrm{PtCl}\left[\mathrm{C} \equiv \mathrm{C}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}\right]$ and cis- and trans- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left[\mathrm{C} \equiv \mathrm{C}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}\right]_{2}$ by the method used for the preparation of
phenylacetylides ${ }^{15}$ were unsuccessful and a mixture of $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left[\mathrm{O}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\mathrm{C} \equiv\right.$ $\mathrm{CH}]_{2}$ and $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left[\mathrm{O}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}\right] \mathrm{Cl}$ was probably obtained.

On the assumption that complexes with metal carbon σ-bonds are formed in the course of the alkyne polymerization, we tried to prepare the butynol acetylides under reaction conditions similar to those used for the polymerization. We found that in CHCl_{3} solution cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}_{2}$ reacts with 2-methyl-3-butyn-2-ol to give a monochloro acetylide (II), so that only one chlorine atom of the starting complex is replaced by a methylbutynol molecule. The complex (III) probably has a trans structure since its UV spectrum is very similar to that of trans- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}(\mathrm{C} \equiv \mathrm{C}-$ Ph) (see Table 1).

The same complex (III) is present in the CHCl_{3} fractions of the chromatographed polymerization mixture of 2-methyl-3-butyn-2-ol; trans- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}$ ($\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}$) was found in the corresponding fractions obtained from the polymerization of phenylacetylene.

If bases are added to the cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PtCl}_{2}$ and 2-methyl-3-butyn-2-ol reaction mixture, both chlorine atoms are replaced by 2-methyl-3-butyn-2-ol. In the presence of NH_{3} complex (IV) is formed which exhibits an UV spectrum analogous to that of trans- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}(\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph})_{2}$, and which must thus be trans- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}[\mathrm{C} \equiv \mathrm{C}-\mathrm{C}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}\right]_{2}$. Complex (IV) can also be obtained from the polymerization of 2-methyl-3-butyn-2-ol by elution with $\mathrm{C}_{6} \mathrm{H}_{6}$. [The complex trans- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}(\mathrm{C} \equiv \mathrm{C}-$ $\mathrm{Ph})_{2}$ is obtained from phenylacetylene under similar conditions.]

In the presence of a stronger base as NaOH complex (V) is obtained. The elemental analysis of (V) is similar to that of (IV). Its UV spectrum is very similar to that of cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}(\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph})_{2}$, and complex (V) seemed likely to be cis- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}-$ $\left[\mathrm{C} \equiv \mathrm{C}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}\right]_{2}$. However, since complex (V) can also be obtained from bis(triphenylphosphine) (2-methyl-3-butyn-2-ol)platinum (II) and 2-methyl-3-butyn-2-ol it could be a dihydridoplatinum diacetylide, analogous to the dihydridoplatinum complex (I) reported by Roundhill et al. ${ }^{1,2}$, but this was ruled out by a consideration of the IR and NMR spectra of the two products. The $\mathbb{I R}$ spectrum of complex (V) exhibits a band due to OH stretching at $3620 \mathrm{~cm}^{-1}$ and a $\mathrm{C} \equiv \mathrm{C}$ band at $2120 \mathrm{~cm}^{-1}$. Bands at the same frequencies have been given for (I) by Roundhill et al. (a unique band at $2120 \mathrm{~cm}^{-1}$ was reported by those authors, although two bands might be expected owing to the presence of $\mathrm{Pt}-\mathrm{H}$ and $\mathrm{C} \equiv \mathrm{C}$ bonds in the complex). The NMR spectrum of complex (1) shows two resonances at low fields: a multiplet centered at $\tau 2.39$, due to phosphine protons, and a multiplet at $\tau 9.05 \mathrm{ppm}$, due to methylenic protons. A third resonance from the metal hydride occurs at $\tau 32.88 \mathrm{ppm}$. No separate resonance of the hydroxy groups was observed. Roundhill et al. suggested that the resonance was shifted to the methylene region. The NMR spectrum of complex (V) in CDCl_{2} solution shows a multiplet at $\tau 2.65$, (phosphine protons) and a singlet at $\tau 9.18 \mathrm{ppm}$ (due to methyl protons and probably to OH protons, if the ratio of the areas of the first and second resonance is considered). No resonances at higher fields (up to 40 ppm) were observed in the spectrum of complex (V).

Although the IR and the low field NMR spectrum of complex (V) are very similar to those of Roundhill's complex ${ }^{1.2}$, complex (V) is not a dihydride because no $\mathrm{Pt}-\mathrm{H}$ resonances are present in the NMR spectrum at high fields. The cis structure thus seems then to be the most probable.

The \mathbb{R} spectra of complexes (II), (III) and (IV) also require some comments.

The spectrum of complex (II) is characterized by a band a $1680-1690 \mathrm{~cm}^{-1}$, due to the $C=C$ stretchiag vibration which appears at a similar frequency in Chatt's complexes.
 3560 and $3605 \mathrm{~cm}^{-1}$ are present in hexachlorobutadiene (HCB) mulls. The appearence of an additional band at the stretching frequencies of free OH in the HCB spectra shows that some hydrogen bonds of the OH groups are broken in HCB. At present we cannot define the nature of such bonding, but several possible modes exist ${ }^{8.9}$.

The IR spectra of complexes (III) and (IV) show no bands in the reatign for $3600 \mathrm{~cm}^{-1}$. The absence of bands in this region must be the result of strong solid state interactions, probably involving intermolecular bridging by OH groups. The NMR spectrum of complex (III) in CCl_{4} shows a resonance at $\tau 6.65 \mathrm{ppm}$, which disappears on deuteration and which must be ascribed to the hydroxyl group proton. A weak band at $3580 \mathrm{~cm}^{-1}$ is present in the IR spectrum of complex (III) in CCl_{4}. Interactions of OH groups are thus greater in the solid state than in solution. Similar spectra of complex (IV) could not be obtained because of its very low solubility at room temperature.

The IR spectra of complexes (III) and (IV) are characterized by doublets at $2095-2110$ and $2088-2105 \mathrm{~cm}^{-1}$, respectively. In this region the corresponding phenylacetylides show singlets at 2125 and $2110 \mathrm{~cm}^{-1}$, respectively, due to the $\mathrm{C} \equiv \mathrm{C}$ stretching vibrations. To explain the doubling of the band at about $2100 \mathrm{~cm}^{-1}$ in these complexes we have considered the possibility of intramolecular hydrogen bonding between the hydrogen atom of the OH group and the metal atom (involving the d_{z} orbital of the Pt atom); the $\mathrm{Pt}-\mathrm{H}$ stretching frequency in the Pt hydrides does, in fact, occur at about $2100 \mathrm{~cm}^{-1}$. No proton resonances were observed, however, in the NMR spectra of complex (II) below 40 ppm relative to TMS, where the resonances of hydride protons are normally found ${ }^{8-17}$. The IR spectrum of complex (II) in CCl_{4}, in the presence of 20% of pyridine showed the same doubiet at $2095-2110 \mathrm{~cm}^{-1}$. A strong base such as pyridine, should influence any Pt atom hydrogen bonding and the absorption spectrum in the $2100 \mathrm{~cm}^{-1}$ region as well, but this was not observed. The doublet at $2100 \mathrm{~cm}^{-1}$ must thus be ascribed to $C \equiv C$ stretching; the reason for the splitting into a doublet is uncertain.

ACKNOWLEDGEMENT

We thank E.N.I.-S.N.A.M. Progetti for financial support and Dr. G. D'Este of Perkin-Elmer for NMR spectra.

REFERENCES

[^0]9 A. D. Allen and T. Theophanides, Can. J. Chem., 44 (1988) 2703.
10 E. D. Rochon and T. Theophanioes, Can. J. Chem., 46 (1968) 2973.

12 J. Chatt, G. A. Rowe and A. Á. Williams, Proc. Chem. Soc., (1957) 208.
13 K. A. Jensen, Z. Anorg. Allg. Chem., 229 (1936) 265.
14 A. Furlani, I. Collamati and G. Sartori, J. Organometal. Chem., 17 (1969) 463.
15 I. Collamati and A. Furlani, J. Organometal. Chem., 17 (1969) 457.
16 A. Furlani, P. Bicev, P. Carusi and M. V. Russo, in press.
17 P. W. Atkins, J. C. Green and M. L. H. Green, J. Chem. Soc. A, (1968) 2275.

[^0]: 1 G. H. Nelson, H. B. Jonassen and D. M. Roundhlle, Inorg. Chem., 8 (1969) 2591.
 2 D. M. Roundhill and II. B. Jonassen, Chem. Commun., (1968) 1233.
 3 A. D. Gelman, S. V. Bukhovets and E. A. Mellakh, C.R. (Dokl.) l'Acad. Sci. l' URSS, 46 (1945) 105.
 4 S. V. Bukhovets, Izv. Sekt. Platiny Drugikh Blagorod. Metal. Inst. Obshchi.Neorg. Khim., Akad. Nauk SSSR, 29 (1955) 55.
 5 S. V. Bukhovets and K. A. Molodova, Zh. Neorg. Khim., 2 (1957) 776.
 6 S. V. Bukhovets and K. A. Molodova, Zh. Neorg. Khim., 3 (1958) 1540
 7 I. Chattr L. A. Duncanson ano R. G. Guy, Nature, 184 (1959) 526.
 8 J. Chatt, R. G. Guy, L. A. Duncanson and D. T. Thompson, J. Chem. Soc., (1963) 5170.

